

Indices and tables

	Index

	Module Index

	Search Page

Welcome to panaxea’s documentation!

Framework Core

Environment

	
class Environment.Environment(name, model)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Initializes a generic environment instance. Assigns the name and binds
it to the model instance.

This class would not be instantiated itself. It would be extended by
a concrete environment extension.

	namestring

	The name of the environment, this will be used when referring to it
throughout the code. (Eg: AgentEnv,
OxygenEnv, etc.)

	modelmodel

	The instance of the model class to which the environment will be
attached.

	
class Environment.Grid2D(name, xsize, ysize, model)

	Bases: Environment.Environment, object [https://docs.python.org/3/library/functions.html#object]

Initializes a 2D Grid object. Assigns the name, size and binds it to a
model instance.

This class would not be instantiated itself as it lacks any concrete
extension of the underlying
grid. Rather, it is used to check whether position in the grid is valid
and provide moore neighbourhoods
and additional information based on the geometry of a 2D grid.

	namestring

	The name of the environment, this will be used when referring to it
throughout the code. (Eg: AgentEnv,
OxygenEnv, etc.)

	xsizeint

	The number of positions along the x-axis. In other words, the width
of the environment.

	ysizeint

	The number of positions along the y-axis. In other words, the height
of the environment.

	modelmodel

	The instance of the model class to which the environment will be
attached.

	
get_moore_neighbourhood(position, shuffle_neigh=True)

	Returns a list of moore neighbours for a given position.

A moore neighbourhood is intended as all positions immediately
adjacent to a target one.

	positiontuple

	A tuple consisting of exactly two element, each of them being an
integer.

	shuffle_neighbool

	Optional, if set to true the list of neighbours will be shuffled
and returned in a random order.

	list

	A list of moore neighbours

	
valid_position(position)

	Checks whether a coordinate is valid with regards to the size of the
grid instance.

Checks if none of the coordinate values are negative or out of bounds.

	positiontuple

	A tuple consisting of exactly two element, each of them being an
integer.

	bool

	True if the position is a valid one, false otherwise.

	
class Environment.Grid3D(name, xsize, ysize, zsize, model)

	Bases: Environment.Environment, object [https://docs.python.org/3/library/functions.html#object]

Initializes a 3D Grid object. Assigns the name, size and binds it to a
model instance.

This class would not be instantiated itself as it lacks any concrete
extension of the underlying
grid. Rather, it is used to check whether position in the grid is valid
and provide moore neighbourhoods
and additional information based on the geometry of a 3D grid.

	namestring

	The name of the environment, this will be used when referring to it
throughout the code. (Eg: AgentEnv,
OxygenEnv, etc.)

	xsizeint

	The number of positions along the x-axis. In other words, the width
of the environment.

	ysizeint

	The number of positions along the y-axis. In other words, the height
of the environment.

	zsizeint

	The number of positions along the z-axis. In other words, the depth
of the environment.

	modelmodel

	The instance of the model class to which the environment will be
attached.

	
get_moore_neighbourhood(position, shuffle_neigh=True)

	Returns a list of moore neighbours for a given position.

A moore neighbourhood is intended as all positions immediately
adjacent to a target one.

	positiontuple

	A tuple consisting of exactly three element, each of them being
an integer.

	shuffle_neighbool

	Optional, if set to true the list of neighbours will be shuffled
and returned in a random order.

	list

	A list of moore neighbours

	
valid_position(position)

	Checks whether a coordinate is valid with regards to the size of the
grid instance.

Checks if none of the coordinate values are negative or out of bounds.

	positiontuple

	A tuple consisting of exactly three element, each of them being
an integer.

	bool

	True if the position is a valid one, false otherwise.

	
class Environment.NumericalGrid

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Initializes a NumericalGrid object. A NumericalGrid holds a single
number value at each position.

This class exposes methods to explore a position’s neighbourhood.

This class would not be itself instantiated, but would be extended
by another class that would implement it.

	
get_least_in_neigh(position)

	Gets the coordinates of the moore neighbour with the smallest value.
If multiple neighbours meet the criteria,
any may be returned.

A moore neighbourhood is defined as all positions immediately
adjacent the one we are searching. It does not
include the target position itself.

Positions should be given and are returned as tuples of two or three
values,
depending if this object grid is associated to a 2D or 3D environment.

	position: tuple

	The position whose neighbourhood we wish to search.

	tuple

	The moore position with the smallest value.

	
get_max_in_neigh(position)

	Gets the coordinates of the moore neighbour with the largest value.
If multiple neighbours meet the criteria,
any may be returned.

A moore neighbourhood is defined as all positions immediately
adjacent the one we are searching. It does not
include the target position itself.

Positions should be given and are returned as tuples of two or three
values,
depending if this object grid is associated to a 2D or 3D environment.

	position: tuple

	The position whose neighbourhood we wish to search.

	tuple

	The moore position with the largest value.

	
class Environment.NumericalGrid2D(name, xsize, ysize, model)

	Bases: Environment.Grid2D, Environment.NumericalGrid, object [https://docs.python.org/3/library/functions.html#object]

Instantiates a 2D Numerical Grid. This extends Grid2D and NumericalGrid,
allowing to store values in a
two-dimensional grid exposing all methods offered by the aforementioned
classes.

	namestring

	The name of the environment, this will be used when referring to it
throughout the code. (Eg: AgentEnv,
OxygenEnv, etc.)

	xsizeint

	The number of positions along the x-axis. In other words, the width
of the environment.

	ysizeint

	The number of positions along the y-axis. In other words, the height
of the environment.

	modelmodel

	The instance of the model class to which the environment will be
attached.

	
class Environment.NumericalGrid3D(name, xsize, ysize, zsize, model)

	Bases: Environment.Grid3D, Environment.NumericalGrid, object [https://docs.python.org/3/library/functions.html#object]

Instantiates a 3D Numerical Grid. This extends Grid3D and NumericalGrid,
allowing to store values in a
three-dimensional grid exposing all methods offered by the
aforementioned classes.

	namestring

	The name of the environment, this will be used when referring to it
throughout the code. (Eg: AgentEnv,
OxygenEnv, etc.)

	xsizeint

	The number of positions along the x-axis. In other words, the width
of the environment.

	ysizeint

	The number of positions along the y-axis. In other words, the height
of the environment.

	modelmodel

	The instance of the model class to which the environment will be
attached.

	
class Environment.ObjectGrid

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Initializes an ObjectGrid. Object grids at each position hold
collections of objects. Most likely these would be
instances of agents.

This class provides common methods to and, move and remove agents from
the grid. It also exposes methods to get
agent densities at various positions.

This class would not be itself instantiated, but would be extended
by another class that would implement it.

	
add_agent(agent, position)

	Adds an agent to a position in the environment.

This does not check if an agent already exists at another
position. This should be checked separately.

This class does not update the internal state of the agent. So,
if the agent also keeps its own record
of its position in the grid, this should be updated separately.

If an invalid position is provided, then the agent will not be added.

	agentAgent

	The instance of the agent we wish to update.

	position: tuple

	The position to which we wish to add the agent.

	
get_least_populated_moore_neigh(position)

	Gets the coordinates of the moore neighbour with the fewest agents.
If multiple neighbours meet the criteria,
any may be returned.

A moore neighbourhood is defined as all positions immediately
adjacent the one we are searching. It does not
include the target position itself.

Positions should be given and are returned as tuples of two or three
values,
depending if this object grid is associated to a 2D or 3D environment.

	position: tuple

	The position whose neighbourhood we wish to search.

	tuple

	The moore position with the fewest number of agents.

	
get_most_populated_moore_neigh(position)

	Gets the coordinates of the moore neighbour with the most agents. If
multiple neighbours meet the criteria,
any may be returned.

A moore neighbourhood is defined as all positions immediately
adjacent the one we are searching. It does not
include the target position itself.

Positions should be given and are returned as tuples of two or three
values,
depending if this object grid is associated to a 2D or 3D environment.

	position: tuple

	The position whose neighbourhood we wish to search.

	tuple

	The moore position with the highest number of agents.

	
move_agent(agent, position_old, position_new)

	Moves an agent from a grid position to another grid position.

This class does not update the internal state of the agent. So,
if the agent also keeps its own record
of its position in the grid, this should be updated separately.

It is up to the developer to check that the old position did indeed
contain the agent. If an invalid position
is provided as a new position, the agent will not be moved.

Positions should be given as tuples of two or three values,
depending if this object grid is associated
to a 2D or 3D environment.

	agentAgent

	The instance of the agent we wish to update.

	position_oldtuple

	The old position of the agent.

	position_newtuple

	The new position of the agent.

	
remove_agent(agent, position)

	Removes an agent from a position.

This class does not update the internal state of the agent. So,
if the agent also keeps its own record
of its position in the grid, this should be updated separately.

Positions should be given as tuples of two or three values,
depending if this object grid is associated
to a 2D or 3D environment.

	agentAgent

	The instance of the agent we wish to update.

	position: tuple

	The position from which we wish to remove the agent.

	
class Environment.ObjectGrid2D(name, xsize, ysize, model)

	Bases: Environment.Grid2D, Environment.ObjectGrid, object [https://docs.python.org/3/library/functions.html#object]

Instantiates a 2D Object Grid. This extends Grid2D and ObjectGrid,
allowing to place objects in a twp-dimensional
grid exposing all methods offered by the aforementioned classes.

	namestring

	The name of the environment, this will be used when referring to it
throughout the code. (Eg: AgentEnv,
OxygenEnv, etc.)

	xsizeint

	The number of positions along the x-axis. In other words, the width
of the environment.

	ysizeint

	The number of positions along the y-axis. In other words, the height
of the environment.

	modelmodel

	The instance of the model class to which the environment will be
attached.

	
class Environment.ObjectGrid3D(name, xsize, ysize, zsize, model)

	Bases: Environment.Grid3D, Environment.ObjectGrid, object [https://docs.python.org/3/library/functions.html#object]

Instantiates a 3D Object Grid. This extends Grid3D and ObjectGrid,
allowing to place objects in a three-dimensional
grid exposing all methods offered by the aforementioned classes.

	namestring

	The name of the environment, this will be used when referring to it
throughout the code. (Eg: AgentEnv,
OxygenEnv, etc.)

	xsizeint

	The number of positions along the x-axis. In other words, the width
of the environment.

	ysizeint

	The number of positions along the y-axis. In other words, the height
of the environment.

	zsizeint

	The number of positions along the z-axis. In other words, the depth
of the environment.

	modelmodel

	The instance of the model class to which the environment will be
attached.

Model

	
class Model.Model(epochs, verbose=True, properties={})

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Initializes a model object. The model object is the primary
component of each simulation, holding the schedule,
the environments, model properties, and the current progress in the
simulation.

Essentially, the model holds a snapshot of the simulation world at
any point in progress.

	epochsint

	The number of epochs the simulation should run for.

	verbosebool, optional

	If set to true, output is sent to standard output. If set to
false, output (Ie: print statements) is
disabled. Defaults to true.

	properties: dict, optional

	Specifies a dictionary of property values. This can follow any
format he developers need and should be
adapted to the simulation’s needs. Defaults to an empty dictionary.

	
run()

	Runs the simulation for the number of epochs configured or until an
the exit flag is set to true.

Note that the state of the schedule, environments etc. will result
altered after the model runs. If you
wish to run the same model multiple times, you should first copy the
original
instance to a backup variable.

Schedule

	
class Schedule.Schedule

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Holds all simulation steppables and provides methods to progress
simulation epochs.

Agents should be added to agentsToSchedule and not to agents,
they will then be copied to the schedule
before the start of the next epoch.

Similarly, agents which are to be removed should be added ot
agentsToRemove and will be removed before the start
of the next epoch.

The list agents should not be accessed directly.

The list helpers should be set during simulation setup.

	
step_epilogues(model)

	Executes the StepEpilogue method of all helpers first and all agents
after.

It is unlikely that this method would be called directly, but rather
would be called as part of
StepSchedule.

	modelModel

	The instance of the model to which the schedule is bound.

	
step_mains(model)

	Executes the StepMan method of all helpers first and all agents after.

It is unlikely that this method would be called directly, but rather
would be called as part of
StepSchedule.

	modelModel

	The instance of the model to which the schedule is bound.

	
step_prologues(model)

	Executes the StepPrologue method of all helpers first and all agents
after.

It is unlikely that this method would be called directly, but rather
would be called as part of
StepSchedule.

	modelModel

	The instance of the model to which the schedule is bound.

	
step_schedule(model)

	Adds and removes agents from the schedule as appropriate and
executes all step methods of
agents and helpers as appropriate.

	modelModel

	The instance of the model to which the schedule is bound.

Steppables

	
class Steppables.Agent

	Bases: Steppables.Steppable

An agent represents a self-contained unit in the simulation with a
state, a beahaviour and which may interact with,
be affected by and affect the environment and other agents. A simulation
may have multiple agent classes.

Examples of agent classes may include people, tissue cells, etc.

	
add_agent_to_grid(environment_name, position, model)

	Adds an agent to a position in a grid. This both updates the state
of the grid (via API calls to the grid object)
and the internal state of the agent.

This does not check if the agent already exists in the grid. So,
it potentially allows for the agent to be
added to the same grid multiple times.

This method does check whether a position is valid, and where that
is not the case the agent is not added
and a warning is printed to screen.

	environment_namestring

	The name of the environment to which the agent should be added.
This should match the name property
in the environment object.

	positiontuple

	The position to which the agent will be added. This should be
given as a tuple of two or three values,
depending if this object grid is associated to a 2D or 3D
environment.

	modelModel

	The instance of the model on which the simulation is based.

	
move_agent(environment_name, position_new, model)

	Moves an agent from a position to another in an environment.

This both updates the state of the grid (via API calls to the grid
object) and the internal state
of the agent.

This method does check whether a position is valid, and where that
is not the case the agent is not moved
and a warning is printed to screen.

	environment_namestring

	The name of the environment to which the agent should be added.
This should match the name property
in the environment object.

	position_newtuple

	The position to which the agent will be moved to. This should be
given as a tuple of two or three values,
depending if this object grid is associated to a 2D or 3D
environment.

	modelModel

	The instance of the model on which the simulation is based.

	
remove_agent(model)

	Removes an agent from the simulation. This removes the agent all
environments and from the schedule.

In removing an agent from all environments, the internal state of
the agent is also updated.

In practice, the agent is not immediately removed from the schedule
but is added to the list of agents to remove
and will be removed at the following epcoh.

	modelModel

	The instance of the model on which the simulation is based.

	
remove_agent_from_grid(environment_name, model)

	Removes an agent from an environment.

This both updates the state of the grid (via API calls to the grid
object) and the internal state
of the agent.

This method does not check if an agent exists in an environment,
but if it doesn’t the method is trivially
void.

	environment_namestring

	The name of the environment to which the agent should be added.
This should match the name property
in the environment object.

	modelModel

	The instance of the model on which the simulation is based.

	
class Steppables.Helper

	Bases: Steppables.Steppable

A placeholder class to allow for helper steppables to have their own
data-type.

A helper allows to encapsulate logic that should be executed at each
time-step, but which does not belong to any
agent. Common examples could include functions to save text or graphics
to an output file, record model properties,
update environment properties, etc.

This class does not provide methods or attributes, but allows for the
“Helper” data-type to exist which is a bit
more informative than simply having objects of ‘Steppable’ type.

	
class Steppables.Steppable

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents generic steppable object. Steppables represent entities which
can be added to the schedule and whose
logic is excuted once per epoch.

Steppables implement a prologue, main and epilogue. All prologues for
all steppables are executed first, followed
by all mains followed by all epilogues.

	
step_epilogue(model)

	Placeholder to enforce that all steppables implement a stepEpilogue
method with the correct signature. Per se,
this method does nothing but can be overridden by child classes.

	modelModel

	The instance of the model to which the schedule to which the
agent belong is bound.

	
step_main(model)

	Placeholder to enforce that all steppables implement a stepMain
method with the correct signature. Per se,
this method does nothing but can be overridden by child classes.

	modelModel

	The instance of the model to which the schedule to which the
agent belong is bound.

	
step_prologue(model)

	Placeholder to enforce that all steppables implement a stepPrologue
method with the correct signature. Per se,
this method does nothing but can be overridden by child classes.

	modelModel

	The instance of the model to which the schedule to which the
agent belong is bound.

Famework Tookit

	
class Toolkit.AgentSummary(record_every=1)

	Bases: panaxea.core.Steppables.Helper, object [https://docs.python.org/3/library/functions.html#object]

Helper class which, in the epilogue of each epoch, returns a summary of
the count of agents belonging to each class
considering the union of the schedule and agentsToSchedule.

	recordEveryint, optional

	Defines every how many epochs an agent summary is returned. Defaults
to 1. (Ie: Every epoch)

	
step_epilogue(model)

	Builds a summary of number of agents per agent class in the model.

	modelModel

	An instance of the model on which the current simulation is based.

	Counter

	A counter object where keys correspond to agent classes and
values to agent counts.

	
class Toolkit.ModelPickler(out_dir)

	Bases: panaxea.core.Steppables.Helper, object [https://docs.python.org/3/library/functions.html#object]

At each epoch, outputs a serialized copy of the model in its current state.

	outDirstring

	The directory where pickle files should be outputted. This should be
specified as relative to the script
from which the simulation is launched

	
step_epilogue(model)

	Creates and saves the pickle file.

	modelModel

	An instance of the model on which the current simulation is based.

	
class Toolkit.ModelPicklerLite(out_dir, prefix=None, pickle_every=1, pickle_schedule=False, pickle_envs=False)

	Bases: panaxea.core.Steppables.Helper, object [https://docs.python.org/3/library/functions.html#object]

Creates a lighter version of the pickle allowing to include or exclude
specific elements.

	outDirstring

	The directory where pickle files should be outputted. This should be
specified as relative to the script
from which the simulation is launched

	prefixstring, optional

	A prefix that will be given to the name of each output file. Eg: For
a prefix “my_model” a sample output
file would be my_model_epoch_0.pickle Defaults to None

	pickleEvery: number, optional

	Determines the frequency of model serializing. A value of 1 will
create one pickle per epoch, a value of 2
will create a pickle every other epoch, etc. Defaults to 1.

	pickleSchedulebool, optional

	If set to true, the schedule object will be included. This will also
include all agents on the schedule.
Defaults to false.

	pickleEnvsbool, optional

	If set to true, all environment objects will be included. This also
includes all agents in every environment.
Defaults to false.

	
pickle_model(model)

	Creates and serializes the pickleLight object based on previously
defined properties.

	modelModel

	An instance of the model on which the current simulation is based.

	
step_epilogue(model)

	Makes a call to the pickleModel method. No special logic here,
just delegating to the method.

	modelModel

	An instance of the model on which the current simulation is based.

	
Toolkit.depickle_from_lite(picklePath)

	Given a path to a pickle light file, recreates the corresponding object
with all available properties

This is not a helper and should not be added to the schedule. It
is useful to recreate (partial)
model objects.

This model may or may not be runnable when recreated depending on
whether all properties (schedule, environments…)
were retained.

	picklePathstring

	The path to the pickle file relative to where the function is being
called from.

	Model

	A (potentially incomplete) instance of a model derived from the
pickle file.

 Python Module Index

 e |
 m |
 s |
 t

 		 	

 		
 e	

 	
 	
 Environment	

 		 	

 		
 m	

 	
 	
 Model	

 		 	

 		
 s	

 	
 	
 Schedule	

 	
 	
 Steppables	

 		 	

 		
 t	

 	
 	
 Toolkit	

Index

 A
 | D
 | E
 | G
 | H
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	add_agent() (Environment.ObjectGrid method)

 	add_agent_to_grid() (Steppables.Agent method)

 	
 	Agent (class in Steppables)

 	AgentSummary (class in Toolkit)

D

 	
 	depickle_from_lite() (in module Toolkit)

E

 	
 	Environment (class in Environment)

 	(module)

G

 	
 	get_least_in_neigh() (Environment.NumericalGrid method)

 	get_least_populated_moore_neigh() (Environment.ObjectGrid method)

 	get_max_in_neigh() (Environment.NumericalGrid method)

 	get_moore_neighbourhood() (Environment.Grid2D method)

 	(Environment.Grid3D method)

 	
 	get_most_populated_moore_neigh() (Environment.ObjectGrid method)

 	Grid2D (class in Environment)

 	Grid3D (class in Environment)

H

 	
 	Helper (class in Steppables)

M

 	
 	Model (class in Model)

 	(module)

 	ModelPickler (class in Toolkit)

 	
 	ModelPicklerLite (class in Toolkit)

 	move_agent() (Environment.ObjectGrid method)

 	(Steppables.Agent method)

N

 	
 	NumericalGrid (class in Environment)

 	
 	NumericalGrid2D (class in Environment)

 	NumericalGrid3D (class in Environment)

O

 	
 	ObjectGrid (class in Environment)

 	
 	ObjectGrid2D (class in Environment)

 	ObjectGrid3D (class in Environment)

P

 	
 	pickle_model() (Toolkit.ModelPicklerLite method)

R

 	
 	remove_agent() (Environment.ObjectGrid method)

 	(Steppables.Agent method)

 	
 	remove_agent_from_grid() (Steppables.Agent method)

 	run() (Model.Model method)

S

 	
 	Schedule (class in Schedule)

 	(module)

 	step_epilogue() (Steppables.Steppable method)

 	(Toolkit.AgentSummary method)

 	(Toolkit.ModelPickler method)

 	(Toolkit.ModelPicklerLite method)

 	step_epilogues() (Schedule.Schedule method)

 	
 	step_main() (Steppables.Steppable method)

 	step_mains() (Schedule.Schedule method)

 	step_prologue() (Steppables.Steppable method)

 	step_prologues() (Schedule.Schedule method)

 	step_schedule() (Schedule.Schedule method)

 	Steppable (class in Steppables)

 	Steppables (module)

T

 	
 	Toolkit (module)

V

 	
 	valid_position() (Environment.Grid2D method)

 	(Environment.Grid3D method)

 nav.xhtml

 Table of Contents

 		
 Indices and tables

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

